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Abstract. A number of fundamental problems with the
topological analysis of molecular electron densities using
the atoms in molecules (AIM) theory developed by
Bader and coworkers are highlighted. In particular,
contrary to statements made in the literature, we show
that the local zero flux condition used in the AIM theory
to define an atom in a molecule does not follow from the
Schwinger variation principle, nor does it define unam-
biguously the atomic domains. Serious limitations of the
definition of an atom in AIM theory also arise due to
vibrational effects. A general definition of the structure
of a molecular isomer based on a generalisation of the
Born-Oppenheimer potential energy surface allow these
limitations to be overcome.
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Introduction

Since the original article by Moffitt [18] entitled ““Atoms
in molecules and crystals” many atoms in molecules
(AIM) theories have appeared in quantum chemistry.
However, hereafter the term AIM theory will be reserved
for what is commonly referred to as Bader analysis.
The theory of atoms in molecules put forward by
Bader and coworkers is currently widely used for anal-
ysing molecular electronic charge distributions obtained
from experiment or theory. The main thesis of the theory
is that the electron distribution can be used to define
“the atoms of chemistry” and to decompose property
expectation values into additive atomic contributions.
There are many publications which support the view

Correspondence to: P. Cassam-Chenai

that the atoms of the AIM theory rationalise the em-
pirical behaviour that a chemist might expect of an atom
in a molecule and thus the AIM analysis is an attractive
tool for diagnosing important chemical information (see,
for example, the monograph [6]).

One of the significant claims of the AIM theory is
that the boundaries of the atoms in that theory are
uniquely dictated by the Schwinger variational formu-
lation of quantum theory. That is, the atoms of AIM
theory are claimed to be the atoms of Chemistry and
these atoms are in turn a unique consequence of quan-
tum theory. Apart from the remarkable aesthetic im-
portance of such a result, this claim is significant because
it naturally suggests the idea of modelling chemistry
directly and rigorously using these quantum atoms
instead of the more cumbersome wavefunction.

The purpose of the present article is to rectify some
ambiguous or incorrect statements which have appeared
in the literature regarding the fundamental nature of the
so-called zero flux surface which defines the boundary
of an atom in the AIM theory. In particular, we shall
demonstrate that these atoms are not a consequence of
the Schwinger variation principle, as has been claimed.
We also illustrate further difficulties encountered when
applying the AIM theory to define atoms in the case of
excited electronic and vibrational states.

Although our results are somewhat negative, our in-
tention in bringing these points to the attention of the
reader is to offer an explanation of why the AIM anal-
ysis has remained a post facto form of analysis rather
than a new a priori atomic formulation of quantum
theory, and we hope that our work will trigger con-
structive progress in extending the AIM theory to allow
a truly atom-based treatment of quantum theory.

1. Local zero flux surfaces do not define
unambiguously atomic domains

The idea of local zero flux surfaces for partitioning
the one-electron density p of a molecule into atomic
contributions was introduced by Bader and Beddall [1].
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A surface dQ delimiting a domain Q is called a local zero
flux surface if it satisfies the following condition:

Vo(r)-n(r) =0, VreoQ (1)

where n(r) is the outward normal to 0Q at point r.

It is stated on p 31 of [6] that “‘the interatomic sur-
faces, along with the surfaces found at infinity, are the
only closed surfaces of R’ which satisfy the zero-flux
condition of Eq. (1)”. This is not true because any
surface that originates from a nucleus and follows the
gradient of the density satisfies Eq. (1) since the normal
is orthogonal to Vp(r) at every point. That is to say
that Eq. (1) has an infinite number of solutions of the
form depicted in Fig. 1 which is undesirable from the
perspective of defining atomic domains.

In [5] (footnote, p 307) it is acknowledged that nuclei
must be excluded from boundary surfaces but on the
ground that the normal is not defined at these points
because of the cusps in the density. This view is ques-
tionable on two grounds. First, in a real system, the size
of the nucleus is finite, and there is no cusp [11]. The
extension of the point nucleus model to the more real-
istic extended nucleus model, an extension which should
cause no discernible effect as far as chemistry is con-
cerned, appears here to have an unjustifiably exagger-
ated effect on the allowed form of an atom in a molecule,
if that atom is to be bounded by a local zero flux surface.
Second, even in the case where there is a cusp, Bader has
shown (p 40, [6]) that there always exists a function
“homeomorphic” to the density (i.e. nearly the same as
the density, to any desired accuracy), and this function
does not have cusps. Such homeomorphic functions are
used to justify that the nuclear positions can be consid-
ered as so-called (3, —3) critical points, i.e. local maxima
with well-defined gradient equal to the null vector. It is
inconsistent to allow the treatment of the cusp as a well
defined critical point with derivatives in one circum-
stance but not in another.

Our point here is not to invalidate the use of AIM
as a practical tool but to emphasise that the spurious
solutions of Eq. (1) cannot be excluded by using the cusp
argument.

2. Atomic domains do not always partition space uniquely

It is stated in [5] (footnote, p 307) regarding local zero-
flux surfaces that ““the partitioning obtained by excluding
nuclei or attractors, in general, from a boundary surface
is always unique, disjoint and exhaustive and the surfaces
of bound and free atoms are continuously transformable
one into the other”. This is not true for the isolated
hydrogen atom in its ns-state (n> 1) since V p(r) has n—1
finite radii nodal spheres plus one of infinite radius (e.g.
see e’ in Fig. 2 for a picture of a typical 2s-like function)
which satisfy Eq. (1) and do not correspond to attrac-
tors. These nodal zero flux surfaces are contained within
each other, so it is not clear which of the regions bounded
by them is to represent an “atom’.

The existence of maxima in the charge density for
excited states was pointed out for one electron systems
on p 43 of [6]. However, the consequences for an atomic

Fig. 1. The gradient vector field of the density for ethene, C,Hy, in
the ¢, plane, showing a shaded region whose boundary satisfies the
zero flux condition, Eq. (1)
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Fig. 2. Radial dependence of the 1s-like function W(r) [dotted line;

see Eq. (2)], the 2s-like function eW’(r) [dashed line; see Eq. (4)] for

the value ¢ =0.1 and the a less than % solution of Eq. (7), and

the function ®(r) [solid line, see Eq. (3)] showing the zero at
r=3a = 0.093. @ is only distinct from the variational solution ¥ in
the small region r<0.25 which is the reason why in terms of the
distance (defined by square integration) it is only within ¢ of this
function

partitioning of the density based on the zero-flux
condition were not emphasised.

Moreover, it might be expected that ns-like nodal
surfaces also appear for the Rydberg-like states of any
neutral molecule.

3. The Schwinger subsystem variation principle
cannot be applied to zero flux atomic domains

A subsystem variational principle has been invoked to
justify the use of local zero flux surfaces to define atomic
domains (see [5] and references cited therein). It is based
on the Hilbert and Courant generalisation of variation
calculus to the case of variable domains [9] (p 260). The
applicability of this generalisation requires that there
exists a family of mappings g¢ of the local zero flux
surface, dQ(®), defined by the wave functions @ of a



neighbourhood of a given wave function ¥, onto that
defined by ¥, 0Q(¥), with the following properties:

1. go bijective for all ®
2. limq)ﬂ\y gp = Identity
3. go differentiable for all @

We contend that these conditions are not necessarily
fulfilled for the zero flux surfaces of the AIM theory, and
now give a counter example.

Consider a hydrogen atom in its ground state and
choose

(r) NG (2)
where r denotes the modulus of r (atomic units are used
throughout this paper). The only solution dQ(¥), of
Eq. (1) which does not include the nucleus is the surface
at infinity. We will show that no matter how small the
neighbourhood of W is, there exists @ in this neighbour-
hood such that dQ(®) cannot be deformed continuously
by a bijective mapping (so a fortiori by a differentiable
bijective mapping) into dQ(¥). Let us fix <1, and set

D(r) = ¥(r) +&¥'(r) 3)
with
W(r) = W (1 - 2) e 4)

so that ® belongs to the open ball of radius e, i.e.
[|®-W¥|| < ¢forall a. The corresponding density at point
ris

p(r) = (5)
where N, is a normalisation factor, and the gradient is

vmn—%pf—ip@ﬁgﬁf (6)

denoting by r the unit vector along r. Let us choose
r = 3a and solve ®(r) = 0 for a. The result is

e—3(a—l)a3/2 —c . (7)

The left hand side of Eq. (7) is 0 for @ =0, reaches

its maximum value of (%)3/ *ata =1 then decreases
towards 0 as « tends to infinity. This means that no
matter how small ¢ is chosen there are always at least
two values of a such that ®(3af) =0 and so, where
Vp(3at) = 0, for all . Therefore for either one of these
values of a there is, in addition to the surface at infinity,
a surface of finite radius at r = 3a satisfying Eq. (1)
(inherited from the 2s-like component of ®). This
surface does not correspond to an attractor since it is
a node of the density and it is not connected to the
surface at infinity. Since a continuous mapping maps
a connected set to a connected set, dQ(¥) cannot be
mapped continuously onto the two unconnected sur-
faces obtained for ®@. In other words, assuming that the
surfaces at infinity are mapped one onto the other (as
seems to be understood in AIM; however this mathe-
matical problem has not been addressed by Bader and

=
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Coworkers), there is nothing left to map continuously
onto the surface at finite distance. Hence there can be no
mapping, ge, from 0Q(®) onto dQ(V) that is bijective
and differentiable, i.e. satisfying properties 1 and 3.

Figure 2 depicts the three functions W, ¢V’ and @
for the particular choice ¢ = 0.1 and the a < % solution
of Eq. (7). There is a nodal surface in ®(r) at
r= 3a = 0.093 as expected, and another one closer to
the nucleus at r = 0.045.

Although a single counter example is sufficient to
prove our claim, the problem encountered is general
because one can always find in the Hilbert space of
square integrable functions a spike-like function whose
square integral is arbitrarily small but whose density
dominates locally that of a given reference wave function
(not necessarily the ground state solution of the varia-
tional equation). In the case of, say, a 2n electron closed-
shell wave function, one can create n extra zero flux
surfaces in n different locations by adding a Slater de-
terminant of orbitals spiked in n different regions where
the reference wave function density is small compare to
that of the spiked orbitals.

4. Non equivalence of net and local zero flux
atomic domains

One of the original purposes for introducing the local

zero flux condition, Eq. (1), was to define boundary

surfaces such that the operators P> and PP would have

the same average over the so-delimited regions as they

have over all space because of the Hermiticity of the

linear momentum operator P [1]. It was clearly stated in
that only the net zero flux condition,

(1]
/v%mm:o, (8)
Q

was required to achieve this aim and that the local zero
flux condition at Eq. (1) was a stronger, sufficient but
not necessary condition. However in later publications
where an attempt was made to use the subsystem
variational principle of Sect. 3, it was argued (p 78 of
[3], p 158 of [6], equivalence between Egs. (17) and (18)
in [5] and between Egs. (21) and (22) in [19] where
it is stated that the steps from Eq. (20) to Eq. (26) can
be reversed) that the local zero flux condition was
necessary. This is clearly false since the more general
local condition for all ®

Vo(r) -n(r) =V x A(r) -n(r), VreoQ 9)

where A(r) is an arbitrary vector field, is sufficient to
obtain net zero flux for all ®. This is because when one
applies the Green-Ostrogradsky formula to transform
the surface integral over dQ of the right hand side of
Eq. (9) into a volume integral over Q, the divergence of
the expression V x A appears, and this equals zero at all
points.

It has also been claimed that only the local zero flux
surface has the property that, at all times, the net zero
flux condition is maintained (p 379 of [6], p 77 of [3]).
This, also, is false, since a zero flux surface satisfying
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Eq. (9) at all times can be defined regardless of whether
A is constant (local zero flux) or not (general net zero
flux), the set form of A playing no particular role.

5. Vanishing of atomic domains at vibrational nodes

Consider a bound state of a given molecular system.
Assuming that the translational degrees of freedom have
been taken care of rigorously as described, for example
in [12], the wave function W is a function of the
electronic variables r = (r,rs,...,ry,) and the nuclear
co-ordinates R = (Ry,...,Ry,), integrable over the ro-
vibrational degrees of freedom. Note that the symbols
for the sets of vectors r and R are distinguished from
vector positions in that they are not in italic font. More
specifically, in the frame of the adiabatic approximation
the wave function can be written in the form

lP(ra R) =Y, (l‘, R)‘"Pn (R) (10)

with ¥,, normalised with respect to R and ¥, normalised
with respect to r for all R. Then the one-electron reduced
density p of the system for a given nuclear configuration
is also the product of two factors:

p(r,R) = p.(r,R)p,(R) (11)
where

p.(r,R) = N, / ¥ (r, R)P,(r,R) T1Y,dr; (12)
p.(R) =¥, (R)¥,(R) (13)

Remember [15] (or [9] p 451) that as soon as there
exist two distinct orthogonal states then one of them
at least will have a nodal surface. So if there is more
than one bound vibrational state in the system there
exists a nuclear configuration R® and a bound state ¥,
such that

¥,(R%) =0 (14)
This implies
p(r,R%) =0, Vvr. (15)

So according to the AIM theory, such a system has
no atom, no bond and no structure at configuration R’.
This conﬁguratlon can be the equilibrium configuration:
think of the first excited vibrational state in the har-
monic approximation, or close to it when anharmonicity
is taken into account. To our knowledge, this type of
catastrophe has not been addressed before.

If the exact wave function cannot be cast in the form
of a single product as in Eq. (10), but is instead a linear
combination of such products, one term will generally
dominate the expansion and the problem of getting a
meaningful structure at a nodal point of the nuclear
function of this term will remain.

6. Multiple atomic domains in vibrational excited states

One can think of two ways to circumvent the difficulty
within the AIM theory. First, it can be acknowledged

that the theory is limited in its application to approx-
imate wave functions of the form of Eq. (10) and that
the genuine one- electron density p(r, R®) must be
replaced by p.(r, R®). Second, as mentioned on p 68 of
[3], one can average over nuclear co-ordinates and use p
to define the structure, with

() = [ o RGR (16)

where dR =TT, dR;. In fact, this equation is incorrect.
In addition to removing the translational degrees of
freedom, the rotational part of the wave function must
be factored out because averaging over the rotational
degrees of freedom gives a density that is not suitable for
the AIM analysis, a difficulty not acknowledged in [3].

In Fig. 3 we present a plot of p(r) for the dinitrogen
molecule N, calculated in the Born-Oppenheimer ap-
proximation. W (r, R) was obtained at the SCF level
using Dunning’s DZP basis set [10], and ¥ ,(R) was the
first excited vibrational state in the harmonic approxi-
mation using the experimental equilibrium separation
r, = 2.067 atomic units and vibrational frequency,
= 2359.61 cm™'. The density was calculated by using
an adaptive Simpson’s rule quadrature, integrating the
dimensionless vibrational normal coordinate ¢ from —4
to 4, and ensuring each density point was converged to
107% electrons per cubic bohr. This required approxi-
mately 12,000 individual SCF calculations. It is clear
from the figure that the AIM analysis would find 4
“atoms” in this molecule. The width of the plot is 0.5
atomic units, so the separation of the two atomic peaks
is about 0.04 A.

Conclusion: local zero flux surfaces are not
fundamental according to quantum theory

Bader and co-workers have made a claim in an abundant
literature that local zero-flux surfaces are fundamental
according to quantum theory. They argue that only local

Fig. 3. The electron density along the bond axis in X ! Z+ N,
molecule, showing a 0.5 atomic units slice around one N atom for
the static charge density p, (dotted line), and for the vibrationally
averaged charge density, p, in the v = 1 state (solid line)



zero-flux boundaries permit to derive the hypervirial
theorem for a subsystem from what they call “a
generalisation of Schwinger variational principle”. For
example we find in [4] the following statement: “What is
remarkable and physically important is that this final
generalisation [the generalisation to a subsystem of a
total system of Schwinger’s derivation of Schrédinger’s
wave equation and the hypervirial theorem from a
variational principle] is possible only for a particular
class of subsystem, those which satisfy a variational
constraint [the zero flux condition]”.

We note that, if one follows the traditional philoso-
phy that the best derivation is the one which requires
fewer assumptions, the Schrédinger equation derivation
of the subsystem hypervirial theorem is to be preferred
to the derivation via the Schwinger principle, since no
assumption is required on the bounding surface ([6] Sect.
5.2). It might also be noted that this derivation which
places no emphasis on zero flux surface is far more
economical than the variational one. It seems strange to
try to justify the zero-flux constraint by invoking a
weaker demonstration of a general theorem (i.e. valid for
all cases), that is only applicable under this particular
restriction.

In any case, we have shown in Sect. 4 that the con-
dition such a reasoning could possibly justify is not that
of local zero-flux but only that of net zero-flux. How-
ever, in Sect. 3 we have proved with a counter example
that the whole approach is problematic because the
application of Schwinger principle under the conditions
of Courant and Hilbert is not valid for a subsystem
delimited by a zero-flux surface. Taken together, these
points show that Bader and coworkers’ use of the
Schwinger variational principle fails to demonstrate that
atomic domains defined by the local zero flux surface are
implied by the principles of quantum mechanics.

Therefore, it is not surprising that this condition must
be supplemented by additional conditions to represent
meaningfully an atom (Sect. 1), that the local zero flux
surface does not provide a well defined separation into
atomic domains for electronic excited states (Sect. 2) and
that the AIM theory is limited to the vibrational ground
state (Sects. 5 and 6). Note also that the latter point
cannot be simply fixed by defining an atomic domain as
an attractor and its basin [§].

It might be possible to extend the Hilbert and Cou-
rant variation calculus to overcome the problem exposed
in Sect. 3; however, the common use of the AIM analysis
is not contingent on it being derivable from first prin-
ciple quantum theory. Indeed, physics and chemistry
being empirical sciences, it is perfectly legitimate to im-
pose ad hoc additional conditions, such as the condition
that the local zero flux surface should not pass through a
nuclear position, or that the theory should be limited to
the vibrational ground state in order to retrieve “‘the
atoms of chemistry”. Similarly, for electronic excited
states one might extend the taxonomy of the AIM theory
by proposing that an atom be defined by the outermost
enclosing local zero flux surface, although this is a topic
which requires further analysis and is not as straight-
forward as the case of the non-nuclear attractors called
“pseudo-atoms” discussed in [6].
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The difficulties raised by excited vibrational states are
not exclusive to the partitioning by zero flux surfaces.
These problems also hinder the generalisation to the
complete molecular system (electrons plus nuclei) of
many analyses based on purely electronic wavefunctions
or densities, such as those of Li and Parr [16], Hunter
[14], Gill [13] to quote a few. Such a generalisation is of
course desirable because molecules in excited vibrational
states are omnipresent in nature (except in the inter-
stellar medium) or in the flask of the chemist. This has
already led one of us to prefer the reduced Coulombian
potential plus electronic kinetic energy operator' as a
basis for defining molecular structure [7]. This quantity
is expressed for a translation free, totally symmetrical
with respect to rotations, bound state (see [7] for details
and generalisation) as

[ (r,R)(T, + V(r,R))¥(r,R)dr
v(R) = T (r, R)¥(r, R)dr (17)

where V(r,R) is the Coulomb potential of the system, 7,
is the electronic kinetic energy operator and dr = I1dr;.
Denote by R the set of all rotationally equivalent nuclear
configurations. Because we are dealing with a state that
is totally symmetrical with respect to rotations, v has the
same value for any configuration in R and we shall call
this value v(R).

The nuclear kinetic energy operator is left out in
Eq. (17) in order that in the Born-Oppenheimer ap-
proximation, v(R) reduces to the usual potential energy
surface (PES), and thus it can be used to generalise
Mezey’s view of isomers as a catchment region in the
PES [17].

The latter definition retains the topological character
of Bader’s definition and allows us to follow Bader et al.
[2] when they disagree with Woolley’s statement that
“if we do not make molecular structure part of the input
of our theory it will never emerge in the output” [20].
Moreover, the drawbacks of Bader’s definition ad-
dressed above are avoided and one has the additional
advantage that the shape of the well in v(R) is related to
the lifetime of the so-defined isomer.

Acknowledgements. We acknowledge stimulating discussion with
Yvan Castin and Claude Le Bris (PCC) and with Stephen Wolff
and Ian Bytheway (DJ). Graham Chandler and Yves Ellinger are
acknowledged for discussions, and hospitality. The Australian
Research Council is acknowledged for funding.

References

1. Bader RFW, Beddall PM (1972) J Chem Phys 56: 3320

. Bader RFW, Tal Y, Anderson SG, NGuyen-Dang TT (1980)
Isr J Chem 19: 8

. Bader RFW, NGuyen-Dang TT (1981) Adv Quant Chem 14: 63

. Bader RFW (1988) Pure Appl Chem 60: 145

. Bader RFW (1994) Int J Quantum Chem 49: 299

. Bader RFW (1995) Atoms in molecules, a quantum theory.
Clarendon Press, Oxford

7. Cassam-Chenai P (1998) J Math Chem 23: 61

N

AN bW

'In fact the latter has been forgotten in the published version and
we take this opportunity to correct this mistake.



. Collard K, Hall GG (1977) Int J Quantum Chem 12: 623
. Courant D, Hilbert D (1953) Methods of mathematical physics,

vol 1. Interscience Publishers, New York

. Dunning TH (1971) J Chem Phys 55: 716

. Friar A (1979) Z Phys A 292: 1

. Froman A (1962) J Chem Phys 36: 1490

. Gill PMW (1996) J Phys Chem 100: 15,421

. Hunter G (1996) Can J Chem 74: 1008

.Jislin GM (1961) Usp Mat Nauk 16: 149

. Li L, Parr RG (1986) J Chem Phys 84: 1704

. Mezey PG (1981) Theor Chim Acta 58: 309

. Moftitt W (1951) Proc Roy Soc (London) A 210: 245

. Srebrenik S, Bader RFW (1975) J Chem Phys 63: 3945
. Woolley RG (1978) Chem Phys Lett 55: 443



